If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23x^2+33x-270=0
a = 23; b = 33; c = -270;
Δ = b2-4ac
Δ = 332-4·23·(-270)
Δ = 25929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25929}=\sqrt{9*2881}=\sqrt{9}*\sqrt{2881}=3\sqrt{2881}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-3\sqrt{2881}}{2*23}=\frac{-33-3\sqrt{2881}}{46} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+3\sqrt{2881}}{2*23}=\frac{-33+3\sqrt{2881}}{46} $
| 4x+29=3x+5 | | 2(x-1)+3(×+2)=15+18-3 | | -7(w+9)=5w+9 | | 0.5x=105 | | P(x)=x4-7x2+6x | | D=2f+1 | | n-2-10n+42=0 | | 2x-7+4x-9=26 | | (x−119)÷7=6 | | 7(x−3)=84 | | 96=2s^2+4s | | 11=5x+20/5 | | 4(x+9)=22+4x | | 0.5x+14+x+15+0.2x+15=180 | | -5/4u=-20 | | 10h(6h+7)=0 | | 2(x+9)=14-8x | | 15p+0.25=3.25 | | 1.68=5x+.08 | | v=59,775(.5)(1.25) | | 2+3x/5+3-x/3=1/5 | | (3x-20)(x+1)=3x^2+11x-20 | | 2/5(10-x)=4.8+3x | | 11+m=39 | | 5/6(30x+12)=25x+10 | | p-16=6 | | y=710 | | x+95+42=180 | | —1/3(n+15)=-2 | | 1/3x+2=-5/9x | | 1/6(4x+42)=3x | | x+6/5=4 |